
Inverted Indices for Particle Tracking

in Petascale Cosmological Simulations
Daniel Crankshaw

The Johns Hopkins University
Dept. of Computer Science

Baltimore, MD 21218
+1-650-269-0846

dcrankshaw@jhu.edu

Randal Burns
The Johns Hopkins University

Dept. of Computer Science
Baltimore, MD 21218

+1-410-516-7708

randal@cs.jhu.edu

Bridget Falck
Institute of Cosmology and Gravitation

University of Portsmouth
Portsmouth, PO1 3FX, UK

+44 (0)23 9284 3137

bridget.falck@port.ac.uk

Tamás Budavári
The Johns Hopkins University

Dept of Physics and Astronomy
Baltimore, MD 21218

+1-410-516-0643

budavari@pha.jhu.edu

Alexander S. Szalay
The Johns Hopkins University

Dept of Physics and Astronomy
Baltimore, MD 21218

+1-410-516-7217

szalay@jhu.edu

Jie Wang
Nat. Astron. Obs. Of China

Datun Road, ChaoYang
Beijing, China

+86-010-64888708

jie.wang@nao.cas.cn

ABSTRACT

We describe the challenges arising from tracking dark matter
particles in state of the art cosmological simulations. We are in the
process of running the Indra suite of simulations, with an
aggregate count of more than 35 trillion particles and 1.1PB of
total raw data volume. However, it is not enough just to store the
particle positions and velocities in an efficient manner – analyses
also need to be able to track individual particles efficiently
through the temporal history of the simulation. The required
inverted indices can easily have raw sizes comparable to the
original simulation.

We explore various strategies on how to create an efficient index
for such data, using additional insight from the physical properties
of the particle motions for a greatly compressed data
representation. The basic particle data are stored in a relational
database in course-grained containers corresponding to leaves of a
fixed depth oct-tree labeled by their Peano-Hilbert index. Within
each container the individual objects are sorted by their
Lagrangian identifier. Thus each particle has a multi-level
address: the PH key of the container and the index of the particle
within the sorted array (the slot).

Given the nature of the cosmological simulations and choice of
the PH-box sizes, in consecutive snapshots particles can only
cross into spatially adjacent boxes. Also, the slot number of a
particle in adjacent snapshots is adjusted up or down by typically
a small number. As a result, a special version of delta encoding
over the multi-tier address already results in a dramatic reduction
of data that needs to be stored. We follow next with an efficient
bit-compression, adapting to the statistical properties of the two-

part addresses, achieving a final compression ratio better than a
factor of 9. The final size of the full inverted index is projected to
be 22.5 TB for a petabyte ensemble of simulations.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Scientific Databases, Indexing
methods, Spatial Indexing

General Terms

Algorithms, Design.

Keywords

Cosmological N-body simulations, Inverted Index

1. INTRODUCTION
The next generation of astronomical surveys will measure millions
of galaxy positions and probe an ever-increasing volume of the
sky. We now know the value of cosmological parameters within
an accuracy of a few percent, at which level subtle effects become
dominant and parameter estimation becomes increasingly
sophisticated. In order to understand structure formation at the
largest scales, data-intensive simulations are needed to keep up
with data-intensive observations.

Indra is a suite of large-volume cosmological N-body simulations
that will provide excellent statistics of the large scale features in
the distribution of dark matter while at the same time resolving
the nonlinear evolution of structure. In total, the Indra simulations
will save over a Petabyte of data, which will be primarily in the
form of the positions and velocities of dark matter particles at
many time steps as the simulation evolves. To connect these dark
matter particles to observations of galaxies, we will identify and
store the dark matter halos – the nonlinear collapsed structures in
which galaxies reside – and the lists of particles that define each
halo. The challenge is that access patterns require more than one
type of indexing: one is based upon the spatial location of the
particles, and the other aggregates the whole time history for each
particle, indexed by their unique ID number, an inverted index for
35 Trillion particles! This paper presents an efficient solution to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SSDBM'13, July 29 - 31 2013, Baltimore, MD, USA.
Copyright 2013 ACM 978-1-4503-1921-8/13/07 $15.00

1

storing and indexing these particles and their time histories for
cosmological simulations.

1.1 Simulations and Cosmic Variance
Large cosmological simulations provide the bridge between linear
theory for the evolution of small fluctuations in the Universe and
today‟s complex structure as seen in large-scale surveys. In order
to determine what the Universe was like at early times,
astrophysicists have been using large numerical simulations based
on first principles and a set of initial cosmological parameters to
predict how the Universe would look today. By computing
similar statistics on the observations and on the simulations, we
can “invert” today‟s observable Universe and get a better
understanding of the precise initial conditions. But observations
of the Universe have a major problem: there is only one Universe,
and we cannot change our point of reference and sample it from
different locations. This effect, “cosmic variance,” poses an
ultimate limit on the uncertainties we can derive purely from
observations. On the other hand, we can use an ensemble of
cosmological simulations to predict the uncertainties in the
cosmological parameters and their covariances.

The spatial power spectrum of cosmological fluctuations contains
a feature, an acoustic resonance frequency, corresponding to the
size of the Universe when it was 300,000 years old. This feature is
quite large, at a spatial scale of 128 Mpc/h [5]. Here, h is a
standard notation for the uncertainty in Hubble‟s constant, at the
core of all distances in cosmology. h is the precise value,
measured in units of 100 km/s/Mpc. 1 Megaparsec is a convenient
unit of distance for cosmology; it is 3.08x1024 cm. One of the
most important cosmological questions today is the determination
of the precise details of the resonant peak in the spectrum, and
how this is correlated with different cosmological properties. As
the spatial scale of this feature is quite close to the box sizes in
many of the current simulations (see Figure 1), in any single
simulation there are very few independent modes on this scale and
the effective degrees of freedom is very small. As a result, any
measurements on these scales are quite uncertain by necessity of
design.

Today‟s simulations are pushing toward one of two competing

drivers: bigger box sizes or higher resolution (Figure 1). Both
require excessive supercomputer resources (hundreds of
thousands of cores and Terabytes of memory) and present
significant data challenges – so they are saving only a few
snapshots and running a single realization. While this is certainly
useful for certain numerical experiments, it does not solve the
cosmic variance problem. Even chopping the largest simulations
into smaller sub-volumes and using these to approximate an
ensemble average on smaller scales does not quite do the job.

Due to the non-linear nature of the simulations and the resulting
mode-mode coupling, the different subvolumes of a single large
simulation are still correlated. Any ensemble averaging over these
correlated subvolumes is a difficult task, and the estimation of
covariances is impacted by the unknown higher order correlations.
These averages will converge very weakly to the true ensemble
average, in the limit of infinitely large box size.

The most efficient way to lower the statistical uncertainties in the
covariances is to run many independent simulations on the scale
of the sub-volumes, each with different initial random numbers.
With this approach, we will get a much faster convergence and
true independence. There is a clear niche for an ensemble of
simulations which individually do not strive to be the largest, but
in their aggregate scale they will be superior to any other
simulation available today. This is the main motivation for our
project, the Indra suite of simulations.

1.2 The Indra Suite of Simulations
Indra consists of a suite of 512 N-body simulations, each with a
little over 1 billion (10243) dark matter particles in a 1 Gpc/h
periodic box. Initially, we have one particle in every 1 Mpc/h
subvolume. The initial conditions (the random amplitudes and
phases for each Fourier mode) in each simulation are based upon
the same cosmological parameters, but with different random
seeds, providing an excellent statistical characterization of the
very large scale modes of the matter density field and with a mass
resolution of about 1011 solar masses per particle.

The simulations are using the Gadget [14] code, running
efficiently over multiple parallel nodes using MPI. The
simulations start at very early times and finish at an epoch
corresponding to the current age of the Universe. During each run
64 snapshots are generated, containing particle IDs, positions and
velocities. Besides the snapshots we also output the complex
Fourier amplitudes for the innermost core of the Fourier transform
of the density, representing all spatial scales larger than 10 Mpc/h.
Furthermore, in each snapshot we run a halo-finder, using a
friends-of-friends algorithm [2] to identify groups of dark matter
particles (“halos”) which will be the sites of galaxy formation.

A single Indra simulation snapshot contains 1.07B particles. With
64 snapshots, in a single simulation we need to store the
positions, velocities and IDs of 68.5B particles. By the time we
reach the whole ensemble of 512 independent realizations, we
will have 35 trillion separate particle instances to deal with in the
data set.

Positions and velocities are output as single precision floating
point numbers, and the particle ID is a 4 byte integer. The raw
data volume is 2.24TB per simulation, 1.15PB for the whole
ensemble. To date, we have completed 80 runs, resulting in 5.5
trillion particles and 180TB of raw data.

Figure 1. A summary of the current state of the art in large-
scale cosmological simulations. The symbols in red denote
Indra: the triangle is one simulation, the yellow circle is the
current state of 80 runs completed, and the diamond is the
whole 512 run suite. The horizontal axis is the linear size of
the total box, and the vertical scale shows the mass resolution.

2

The volume and resolution of the Indra simulations will allow
studies of structure formation from the largest scales all the way
into the nonlinear (small scale) regime. We will additionally be
able to run a few high-resolution re-simulations [7] to capture
more precisely the galaxy-scale formation of structure. For the
purposes of this paper we will use a down-sampled version of a
single realization of Indra, where the number of particles is only
5123.

1.3 From Simulations to Cosmological

Laboratories
Traditionally, numerical simulations were distributed by enabling
people to download the binary snapshot files, which worked fine
as long as the files were a few GB per snapshot and there were not
too many of them. However, the full suite of Indra simulations
will produce a bit over a Petabyte of data. Few universities and
national laboratories have the resources and expertise to manage
and analyze such a large dataset, and moving hundreds of
Terabytes over the network is not currently feasible. With that in
mind, we are setting up Indra as a public numerical laboratory,
where the data is optimally organized for the necessary analysis
patterns and the computations performed where the data is
located. This will be part of the Data-Scope instrument at the
Johns Hopkins University, which has been designed specifically
for data-intensive analyses.

The analysis of cosmological simulations often involves accessing
relatively small regions of space out of a very large box or
filtering the data according to certain properties. Databases, with
their excellent indexing properties, turned out to be surprisingly
well-suited to this purpose. The database built on top of the
Millennium simulation [8] quickly became the world‟s most
popular reference simulation resource for cosmology; more than a
thousand people are running database queries over the search
engine regularly. A clever data structure inside the database
enables extremely fast searches and aggregations over the merger
trees of galaxies, and a user-defined function builds dynamic light
cones out of the simulation on-the-fly.

However, the Millennium simulation database does not store the
full snapshots of particle positions and velocities but instead
contains primarily halos, which are collapsed regions identified in
the simulation using the dark matter particle positions. Another
simulation database, MultiDark [12], was able to store only a few
snapshots of particle data because of the huge storage volume
required; additionally, queries on its particle table are admittedly
time-consuming, limiting its usefulness.

With Indra, we will be storing all the particle positions and
velocities, for all 64 snapshots and all 512 simulation runs,
totaling 35 trillion particles. There will also be halo catalogs,
linked to the particle data, and the complex Fourier modes of the
density field, which are most naturally stored as a cubic grid. The
database for the Indra suite of simulations will require efficient
storage of the particle positions and velocities, and cosmological
analyses will require the ability to track individual particles
through the temporal history of the simulation as they collapse
into halos. New data structures and indexing schemes are needed
for a Petabyte of cosmological simulation data.

This paper proceeds as follows. In Section 2, we describe in some
detail the storage scheme designed for the Indra simulations and
the requirements for the efficient analysis of the data, motivating
the use of inverted indices as well as a compact storage model for

the base date itself. We describe the indexing scheme in Section 3,
showing how it greatly speeds up some typical queries and can be
built on-the-fly. In Section 4 we explain how we exploit the
dynamics of the simulation to compress the indices, which could
easily have raw sizes comparable to the original simulation.
Finally in Section 5 we conclude with discussion of ways to
improve the compression and compute indices as we dynamically
load the simulation one snapshot at a time.

2. THE INDRA STORAGE MODEL
The data for each individual Indra simulation will be stored in a
relational database. At JHU we have been using a cluster of very
high performance database servers, all running Microsoft SQL
Server 2008. SQL Server offers an extremely flexible mechanism
to augment its properties with user defined functions and data
types, capable of implementing very complex objects with their
properties and methods, all accessible through SQL. The database
engine provides automatic parallelism (as long as the data is laid
out well), and efficient query plans. Over the years we have
developed an elaborate spatial indexing library [9] that enables
the use of space filling curves to organize and search data, and
maps onto range queries over the high performance B-trees inside
the database engine.

The data is organized into three main tables: the Particle table
contains the particle ID, position, and velocity of every particle
for all 64 snapshots, labeled by snapnum, in the range of [0,63];
the Halo table contains the halo ID, the list of particle IDs that
comprise each halo, and various derived halo properties, for all
halos at all snapnums; and the Fourier table contains the Fourier
modes of the large-scale density field saved at a high temporal
resolution. The full suite of Indra simulations will thus consist of
512 separate databases, each with its own Particle, Halo, and
Fourier tables, plus some small tables of metadata containing the
physical units of the simulation, the correspondence between
snapshot number and cosmological epoch, etc. These databases
can (and will) be stored on separate database servers, distributed
over a large cluster with a fast interconnect.

Each of the main data tables will make use of a user-defined data
type called SqlArray [4], which allows blobs of binary data
ordered in multi-dimensional arrays to be stored as one item in a
row. For the particle data, this greatly reduces the number of
required rows, considering that a schema with one row per
particle results in over 68 billion rows for just one of the 512
Indra simulation runs. For the halo data, we will store the IDs of
the particles making up the halo also as a SqlArray, in the same
row as the rest of the halo properties. This halo membership array
can then be used to link to the particle data as well as calculate
halo properties on the fly. The array-based storage is also an
optimal way to store the Fourier modes of the density field and
integrates well with common math libraries for the calculation of
Fast Fourier Transforms directly in the database. The SqlArray
data-type is also used by several other projects, namely the
turbulence databases at JHU, currently containing more than
100TB of data [11].

In analyzing cosmological simulations, one is often interested in a
particular region of the simulation cube – i.e., halos or collapsed
structures, voids or low-density regions, particles near halos, light
cones, etc. Many common analyses require identifying particles or
halos within localized regions of the simulation volume. Thus
instead of randomly assigning particles to different arrays, we
group the particles into “buckets” organized according to a space-

3

filling Peano-Hilbert curve. The PH curve is known to have the
best clustering properties among all space filling curves [10],
enabling maximally sequential access on the hard drives
containing the data for particles close to each other in the
simulation volume. Thus indexing along a PH curve makes spatial
queries much more efficient.

The Spatial3D library [9] has been developed to use various
space-filling curve plugins and define geometric searches. It
enables the composition of 3-dimensional shapes from basic
geometric primitives; these shapes are accessed via User-Defined
types. Searches for points within these shapes are expedited by the
space filling curve index, and the shapes exploit the periodic
boundary conditions of cosmological simulations. The Spatial3D
library is currently being used in the Millennium, MultiDark, and
turbulence simulation databases.

For Indra, we use a coarse-grained PH curve and group all
particles with the same PH key into the same array. The buckets
are leaves of a 6-deep, level oct-tree, with 64 buckets per linear
dimension. The total number of the buckets is 643=262,144. So
for our test simulation, with 5123 particles and a 6-bit PH curve,
we can reduce the number of required rows in the Particle table by
a factor of 512. This is significant, as there is a 6 byte overhead in
SQL Server for each row. This decreases the size of the B-tree
indices as well. Additionally, indexing the particles according to a
PH curve can greatly speed up spatial queries.

Within an individual PH bucket, we order the particles by their ID
(partID). This ensures that the particle at index i in the ID blob
will have its position and velocity information at index i in the
corresponding position and velocity blobs. While there are other
options, like extending the Peano-Hilbert keys down to the level
of individual particles, we will see later that this ordering offers
certain advantages.

The simulations start from small perturbations on top of a uniform
background density, sampled by a discrete array of particles. As a
result, the buckets will have an almost uniform initial density,
with approximately Gaussian distribution of the bucket counts,
with a mean of 512 particles per bucket. However, due to
gravitational clustering, the count distribution will soon become
very skewed as particles attract one another, and there will be a
long tail, corresponding to a hierarchy of gravitationally bound
groups and clusters of particles (see Figure 2).

Currently we store both the positions and the velocities as single
precision floating point numbers (4 bytes), but it is clear that the
data can be represented in a more compact fashion. For each
bucket one can store (or calculate from the PH key) the lower left
hand corner of the cube describing the bucket. Then each
particle‟s relative position within the bucket can be turned into a
16-bit unsigned integer. As the bucket size is (1024/64) = 16
Mpc, the smallest distance we can represent is 16/216=2-12 Mpc. In
order to estimate the largest relative distance error, we need to
compare this to the size of the box, 1024 Mpc. This dimensionless

ratio is 2-22. The accuracy of this is just 2 times worse than , the
accuracy of the IEEE floating point representation (2-23). As the
simulation is using a much larger “softening length” for the
calculations of the gravitational force, this truncation error is
irrelevant. One can perform a similar compression of the
velocities, by scaling them and truncating as 2-byte signed
integers. So these simple transformations enable us to save a
factor of 2 in the basic storage of the raw data.

3. INVERTED INDEX

3.1 Backtracking Particles
Another type of query pattern requires the back-tracking of certain
particles along their trajectory. Though grouping and indexing
the particles according to their Peano-Hilbert index has several
advantages, especially when we need to evaluate localized
statistics, particle tracking is quite difficult. The brute force option
would be to re-organize the data and build a secondary index table
sorted by partID and snapnum, also containing the position and
velocity. This would effectively double the storage required,
adding another PB to the storage requirements. Alternatively, we
can search the ID blob in each PH bucket for the relevant IDs, but
such queries will be prohibitively time-consuming.

However, these back-tracking queries are typically highly
selective, needing position or velocity data on only hundreds or a
few thousand of the 1.07 billion particles in the simulations. This
problem requires a faster way to search for particles by their ID,
without sacrificing our previously described data storage
strategies of grouping the particle information within a time step
by PH index and storing that grouping as a set of blobs in a single
row.

3.2 Previous Approaches
In our initial approach to solving the indexing problem, we
associated a Bloom filter [1] with each blob of particle IDs at each
time step. One of the biggest bottlenecks in finding individual
particles based on their IDs is the overhead in unpacking
hundreds of thousands of blobs and searching through them, most
of which do not contain any data needed to satisfy these highly
selective queries. A Bloom filter would allow us to quickly probe
each blob without unpacking it to determine whether it contains
any relevant data. We would then need to unpack only those blobs
that result in a positive match.

However, there were several issues with this strategy. In these
particle tracking queries, we are often querying for hundreds or
thousands of particles. With a 6 bit PH index, there are 262,144
indices, and thus Bloom filters, for each time step. Probing that
many Bloom filters hundreds of times is still prohibitively slow.
We then experimented with using Bloom filters to perform set
intersection queries. When using Bloom filters with k hash
functions, we have a potential common member of two Bloom
filters if they have at least k common bits set to 1. We can

Figure 2. The distribution of the number of particles per
bucket as a function of time (labeled with snapnum). The
average number of particles is 512 per bucket. Gravity creates
increasingly tighter clusters in some of the cells, resulting in a
very skewed distribution, approximating a lognormal at late
times. The distribution is most skewed at the last snapshot.

4

determine the number of 1 bits the two filters have in common by
taking the bitwise AND of the two Bloom Filters. We could
therefore take the bitwise AND of the Bloom filter associated with
the blob currently being searched and a Bloom filter associated
with the list of particles being searched for to determine whether
they had a common member. However, while this approach was
faster, we lost the nice properties of the low false positive rates of
Bloom filters when probed for one value at a time. With this
method, the false positive rate was close to 100%, resulting in
nearly every intersection query having a potential match. We were
getting so many false positives that we were back at the original
bottleneck of needing to unpack prohibitively many blobs.

3.3 Basic Inverted Index
Rather than rebuilding a transposed index and effectively doub-
ling our storage, we will show how to build an efficient pointer
into the existing index. In order to do this, we build first a simple
inverted index on the particle data so that we can use the primary
keys of our Particle table, then we consider various compression
schemes to minimize its size.

Every particle‟s data (position, velocity) are stored in SqlArray
blobs in the Particle table, ordered and indexed by (snapnum,
PHkey). The particle‟s position within this array is given by its
“slot,” which is a 2 byte unsigned integer. Therefore, each
particle‟s data can be fully identified by a three part address:
(snapnum, PHkey, slot).

The index itself is simple in principle. Imagine that we create an
additional table in our database for each simulation. This table has
four columns: partID, snapnum, PHkey, and slot. The primary key
of the table is on the partID and snapnum. The PHkey column
contains the PHkey of the particle at the particular snapshot. The
slot refers to the offset of that particle‟s information within the
blobs at that PHkey. Because the data are sorted by particle ID
within a blob, this slot is consistent for the three blobs in the
Particle table, containing partIDs, positions, and velocities.

Storing the slot information alleviates the need to unpack each of
the blobs containing relevant particle data and search through
them. Using one of the methods of the SqlArray class, we can
directly seek to and extract the relevant data within each blob,
further speeding up the query.

In the following sections, we show how we built the index, how
this information is enough to complete particle tracking queries in
seconds, and that we can create the inverted index quickly and
with minimal overhead to the simulation data post-processing we
already must perform. We also show that we can compress the
index to the point where the extra space required for it is
acceptable compared to the size of the simulation.

3.4 Construction of the Index
Creation of the index takes several steps. The Gadget-2 simulation
code outputs flat files at every time step containing the position
and velocity of each particle in a special format [14]. When we
load the simulation data into the database, these flat files are
parsed and transformed into files matching our table schema in the
native SqlServer binary format for fast bulk ingest.

The output from the simulation in each snapshot is divided into
several files using a high level PH curve, i.e. all particles in a
given oct-tree cell are stored in the same file. We transform one
file at a time by reading its contents into memory, computing the

6-deep PHkey value from the positions, sorting it by PHkey and
then partID, then writing the data back out in the SqlServer native
binary format.

These files contain the snapnum, partID, PHkey, as well as the
offsets within each PH bucket for each particle, as we write the
data to disk. This additional step (on top of the loading the proper
base data) adds an approximately 18% overhead to the processing
time. We can then use the BCP command line utility to quickly
load the files into our database. This is the same technique used to
load the transformed particle files. The loading is performed into
separate temporary tables for each of the files, using as much
parallelism as possible.

However, for our inverted index, we need to transpose these files,
where we can place the location data for the same particle
collected into a single block, ordered by snapnum. We need the
sort order to be partID and then snapnum. This requires an
additional sort on the index.

This sorting of the index is done in the database using a custom
merge sort workflow employing multiple steps, coded as stored
procedures. We first sort all records within a snapshot by partID.
The index for a single snapshot is about 1.5 GB, so this sorting
can be done very efficiently in memory. We then split the
snapshot into 128 blocks, such that the records from all time steps
for the first 1/128th particle IDs are in the first block, the second
1/128th records are in the second block, etc. However, each of
these blocks are still sorted by (snapnum,partID). We then re-sort
each block in memory (each block is just under 800 MB) by the
transposed order of our keys (partID, snapnum) resulting in the
final ordering required by our index.

Each of these steps – processing the simulation output, loading
into the database, and sorting the index – can be done in parallel.
Figure 3 illustrates the index creation process from start to finish.
Starting from the flat files that are portioned by PHkey, we can
create a partial index for every snapshot independently and thus in
parallel. We can then load each of these partial indices into the
database in parallel, especially if they are partitioned across

Figure 3. Flowchart of the index creation process. The
blocking of the data enables efficient memory usage and
parallelism.

5

multiple disks. Once the data is in the database, we partition it
into small blocks that can be sorted in parallel. SQLServer uses
the available multiple cores very efficiently. Figure 4 shows the
scale-up of the last two portions of this workflow as function of
the number of processes employed on an 8-core machine. Each
process performed the extraction from the snapshot partial indices
to an index block and then sorted the index block by (partID,
snapnum) for 8 blocks sequentially. This process did not quite
achieve linear scaleup but still performed very well with 8
concurrent processes. One of the next steps in dealing with the
Indra data is to build a highly efficient parallel loader for the
particle data, fast enough to dynamically load simulation time
steps on-demand. Our expectation is to load a single snapshot on
the order of one minute. One of the components of this loader will
be to efficiently merge partial indices with the index from a newly
loaded snapshot to allow for incremental updates to a functioning
index (see Section 5).

3.5 Particle Tracking Queries Using the

Inverted Index
Once the index has been built, it can be used to efficiently
perform particle tracking queries. These queries take the following
general form1:

o Identify the particle IDs of the particles being queried –
these are often the member particles of a halo – and
place them into a temporary table.

o Join this ID table with the inverted index where the time
step of the index matches the desired time step. If
querying for the positions at all time steps, no predicate
on the time step number is provided. This provides a list
of PHkeys and slots needed.

1 The actual implementations of these queries are as User-Defined

Functions in SQL CLR using C#. Using C# makes it easier to
interact with the SqlArray library functions.

o Consolidate all of the slots for a given PHkey in a given
time step into a single array using the SqlArray library,
and store this consolidated index data in another
temporary table.

o Join the (snapnum, PHkey, slot) table with the Particle
table.

o Select the data at the needed slots from each of the
blobs.

Figure 5 shows the halo tracking query execution time as a
function of the number of particles in the halo. Even the largest
halos at over 9000 particles can be tracked in just a few seconds,
compared to the several minutes required when not using the
index.

One example of a query that requires particle tracking is building
a merger tree, which links a given halo to the halos in previous
(and subsequent) snapshots by tracing the dynamical evolution as
smaller halos combine to form larger halos at later times. Since
the halos are identified separately at each snapshot of the
simulation, the halo IDs in different snapshots have no relation to
each other. Building the merger history of a halo requires
comparing the particle lists for halos that have similar locations
across consecutive snapshots, and then assigning parent halos to a
given halo according to some physical criteria. The speed-up
provided by the inverted index will make it feasible to calculate
halo merger trees directly in the database.

A simplified version of a merger tree is shown in Figure 6, where
just the x positions of a late-time halo are shown for all previous
time-steps. In particular you can see a large branch to the right
and smaller branch to the left, which would have been a sub-halo
that only merged with the larger halo at a time step of around 60.
This is an example of the type of data that we can efficiently
gather using the inverted index.

Some queries that rely on particle tracking do not depend on the
halos. The particle IDs themselves encode information about the
Lagrangian positions of the particles, i.e. their initial locations on
the 3-dimensional cubic lattice. This information is used, for
example, by the ORIGAMI algorithm [6] which measures the
morphology of the „cosmic web‟ of structures in a simulation by
keeping track of whether particles have switched places with
respect to their initial configuration. This will require particle
tracking for every single particle in the simulation, which will be
possible only with the efficiencies that the inverted index
provides.

4. INDEX COMPRESSION
Here we show how we exploit properties of the underlying
physical system being modeled, as well as efficient integer bitwise
compression schemes, to significantly reduce the footprint of the
index on disk.

The index as described so far is unfeasible for use in petascale
simulations such as Indra. A single run of the Indra simulation is
just over 2 TB, while the index for a single run of the simulation
is about 0.4 TB, or 1/5 the size of a simulation. This means that
for a 1 PB suite of simulations, we are also incurring an additional
200 TB needed to store the inverted indices for these simulations.
Thus, we turn to a variety of compression techniques to minimize
this footprint.

Figure 4. Scaleup for splitting the index into blocks by partID
and then sorting these blocks. These are the last two steps of
the index creation. Each process performed these two
operations for 8 blocks sequentially. The base time for one
process was 15 seconds.

6

4.1 Compressing the PHkey Column
Let us consider first accessing the history related to a single
particle. To store the relevant 3-part address, we need to create an
array for each particle that contains three columns: the snapnum
(0.63), the PHkey in each snapshot (18 bits), and the slot (16
bits). As for each particle this table will be exactly 64 rows deep,
we can omit storing the snapnum; it will simply map onto the row
number of the table. This saves us 64 bytes per particle.

Next, we should look at the statistics over the histories of the
particles. Figure 7 displays the probabilities that a particle will
cross over to another bucket during the simulation. It turns out
that for the bucket size we have chosen, the average number of
cross-overs is 1±0.84. This means, that the column containing the

PHkeys is incredibly redundant, typically 63 out of the 64 values
are identical.

Furthermore, it is important to note that the particles move
continuously and their velocities are small enough that between
consecutive snapshots they can only cross into their nearest
neighbors. As each bucket has only 26 directly connected
neighbors (we have periodic boundary conditions), we can encode
the relative displacements as one of 27 distinct values, with 0
designating no crossovers. As a result, we can assume that each
column containing the PHkeys can be represented as the initial
PHkey, and an array of 5-bit numbers, mostly consisting of zeros.
This is effectively a physics-based delta encoding of the PHkeys.

We can compress the data further by noting that every crossover
can then be represented in 11 bits, a 6-bit address for the
snapnum, and a 5-bit transition code. We also need 6 more bits to
store the count of the crossovers, as there are 64 snapshots.

In summary, each PHkey column can be stored in 18+6+11N bits
where N is the number of transitions. As the expectation value of
N is 1, the typical storage requirement for the PHkey column is 35
bits, compared to 64*32 = 2048 for the raw database column, for
an effective compression ratio of 2048/35 = 58.5.

To decode this scheme, we also create a secondary lookup table
which stores the correspondence between PHkey neighbor code
and actual value for each key. This table is 123.2 MB on disk (for
our test simulation), negligible compared to the terabytes needed
to store the index for the entire simulation suite, even after being
compressed. We can then trace the path of the particle through its
adjacent neighbors using this lookup table until we reach the
decoded PHkey for the time step being queried. As this table is
small, and will be frequently used, it will always remain in hot
cache.

4.2 Compressing the Slots
The same observations about the physical dynamics of the
simulation lead to a compression scheme for the slot portion of
the index. PH cells can have thousands of particles in them, and
so without any compression we need 2 bytes to store the slot
number. But we have already noted that because the particles are
relatively slow moving, they don‟t change PH cells very often.
Figure 8 shows the probability distribution of distinct slot
numbers for an individual particle. The result is quite depressing
at first, as the expectation value is 57, out of the maximum 64.

Figure 7. Probability of the number of times a particle will
cross over to another bucket during the simulation. The x-axis
is the number of crossovers.

Figure 5. Query execution times to find the positions of all
particles in a halo at all time steps using the uncompressed
inverted index. The times are the average of computing the
query for 10 equal-sized halos in the final snapshot. Even the
largest halos can be fully tracked in under 30 seconds.

Figure 6. The x position of all particles in a 200-particle halo
at every timestep. The halo was identified in the final timestep
(64). This figure shows the clustering of the particles through
time as they are drawn together by gravitational forces. The
query to find all of this data took 4 seconds to perform using
the inverted index.

7

However, we should realize that in order for the slot number for a
particle to change between consecutive snapshots, other particles
with a lower ID must either enter or leave the particle‟s PH cell or
the particle must change PH cells. Thus, the change in slot
number between adjacent snapshots will tend to be small, as in a
given snapshot only 1/64th of the particles are changing buckets.
We therefore propose to use first a delta encoding [3] on the slot
number, resulting in much smaller numbers to be stored, on the
order of 10‟s rather than 1000‟s.
Figure 9 displays the probability distribution of the differential
slot values (dslot). As the figure shows, the slot deltas are heavily
weighted towards small numbers. Furthermore, the distribution is
quite skewed towards positive dslot values. First this may seem
strange, but this is just a reflection of the skewness present in
gravitational clustering. As the distribution of cell counts has a
long tail with cells of very high cardinality, these arise as particles

from low density adjacent cells are all moving into a high density
cell. As a result, there will be only small decreases on the slot
values on all the low density cells, while in the small number of
high density cells we will generate large dslot values as many new
particles are inserted into the ordered lists at every snapshot.

In order to assess the details of the distribution it is better to plot
both the positive and negative tails of the distribution, on a
logarithmic scale (see Figure 10).

Using this plot, we can estimate how compressible the dslot
values are. We can define a window with a [dmin,dmax] value within
which a small number of bits encode the value. The remaining
small number of occurrences can be encoded as exceptions taking
up a full 16 bits. This is essentially a variant of the Frame-of-
Reference (FOR) encoding [3]. We can use N bits to represent the
small values, with 0 corresponding to the lower bound,

dmax = dmin+2N-1, (1)

and we can use the value dmin+2N as marking an exception.

We will use the two-tailed distribution to define a symmetric
threshold applied to both the positive and negative tails alike. For
the different values of this tail probability we will get both a
positive and negative limit for the exceptions. For N bits, these
values should be 2N-1 apart.

For example, for N = 4, we should select a threshold for the tail
probability to be 0.100, i.e. 20% of the slots will be exceptions.
However, the remaining 80% can be then coded in 4 bits. The
table below shows the respective thresholds for N = 4, 5 and 6. If
the tail probability is p, for a given N, then the effective number of
bits is given by

B = N + 2p·16. (2)

The summary of these different N values is shown in Table 1. It is
clear that there is an optimum: N = 5 gives the best compression
for the dslot column at 6.28 bits per slot.

5. CONCLUSION
The Indra suite of cosmological N-body simulations will provide
excellent statistics of the large scale features in the distribution of
dark matter while at the same time resolving the nonlinear

Figure 10. The positive and negative cumulative tail
distributions of the delta-encoded slot values (dslot).

Figure 8. The figure shows the probability distribution of the
number of distinct slot values for the individual particles. The
average is 57 out of the maximum 64.

Figure 9. The probability distribution of the delta-encoded
slot values. Note the skewness of the distribution, and also the
sharp peak at zero lag.

Table 1. Summary of different thresholds for our
FORDelta compression scheme

bits range tail

probability

effective

bits

compression

ratio

4 15 0.100 7.20 2.50

5 31 0.040 6.28 2.72

6 63 0.015 6.48 2.54

8

evolution of structure. It will present the best effort to-date toward
overcoming the cosmic variance limit on the uncertainties we can
derive for large-scale structure measurements of cosmological
parameters. When complete, Indra will be made available to the
community through a state of the art database infrastructure.

The Indra simulation data will consist of 10243 particles per
snapshot, plus halo catalogs and the complex Fourier modes of
the density field, for 64 snapshots and 512 individual simulations,
resulting in 35 trillion particles and 1.15 petabytes in total.

The database will make use of the SqlArray library by grouping
the particles into chunks according to the space-filling Peano-
Hilbert curve, greatly reducing the number of required rows and
thus the SQL Server overhead. Though grouping and indexing the
particles according to their PH index has several advantages,
especially when we need to evaluate localized statistics, particle
tracking is quite difficult.

In this paper we have presented a strategy for creating an efficient
inverted index for these data that speeds up particle tracking
queries so that they complete in seconds. The index can exploit
the physical characteristics of the particle motion in cosmological
simulations to implement a compression scheme on this index.

The two part address of our inverted index can be heavily
compressed. The first part, describing the PHkey is reduced by a
factor of 58.5. The second part, describing the slots, can be also
compressed, using a combination of Delta and Frame-of-
Reference encoding. The compression ratio for the second part of
the address is 2.72. The resulting mean compression ratio for the
whole index is 202/22.5 = 8.97, reducing its footprint to 22.5TB
(see Table 2).

One of the challenges with the inverted index as presented here is
that we must create the index for an entire simulation at once in
order to get good compression performance. Our merge-sort
workflow to sort the index also relies on creating the complete
index at once. We plan on exploring ways to efficiently generate
and compress a partial index on only some of the snapshots, as
well as ways to efficiently merge these partial indexes together.
For example, faster compression and decompression schemes
could make the process of updating the index faster.

We are also in the process of building a fast parallel loader to load
simulation data into the database quickly. We believe we will be
able to load a single snapshot into the database on the order of a
minute by using a server with a large number of cores and storing
the raw data on SSDs for faster I/O throughput. If we reach these
speeds we can dynamically load in snapshots on demand, rather
than needing to load an entire simulation into the database at
once. Being able to incrementally update the inverted index one

snapshot at time would make this dynamic loader even more
effective.

6. ACKNOWLEDGMENTS
This research is partly funded by the Gordon and Betty Moore
Foundation through Grant GBMF#554.02 to the Johns Hopkins
University. The research was also supported by the NSF grant
OIA-1124403.

7. REFERENCES
[1] Bloom, B. H. 1970. Space/Time Trade-offs in Hash Coding

with Allowable Errors. Commun. ACM 13, 7 (July 1970),
422-426. DOI=http://doi.acm.org/10.1145/362686.362692

[2] Davis, M, Efstathiou, G., Frenk, C. S., and White, S. D. M.
1985. The evolution of large-scale structure in a universe
dominated by cold dark matter. Astrophys. J. 292, 371-394.

[3] Delbru, R., Campinas, S., Samp, K., and Tummarello, G.
2010. Adaptive Frame of Reference for Compressing
Inverted Lists. DERI Technical Report, 2010-12-16.

[4] Dobos, L., Szalay, A. S., Blakeley, J., Falck, B., Budavári,
T., and Csabai, I. 2012. An Array Library for Microsoft SQL
Server with Astrophysical Applications. Astr. Soc. P. XXI
461, 323-327.

[5] Eisenstein, D. J., Hu, W., Silk, J., and Szalay, A. S. 1998.
Can Baryonic Features Produce the Observed 100 H -1 MPC
Clustering? Astrophys. J. Lett. 494, L1-L4.

[6] Falck, B. L., Neyrinck, M. C., and Szalay, A. S. 2012.
ORIGAMI: Delineating Halos Using Phase-Space Folds.
Astrophys. J. 754, 126-136.

[7] Jenkins, A. 2010. Second-order Lagrangian perturbation
theory initial conditions for resimulations. Mon. Not. R.

Astron. Soc. 403, 1859-1872.

[8] Lemson, G. and the Virgo Consortium 2006. Halo and
Galaxy Formation Histories from the Millennium
Simulation: Public release of a VO-oriented and SQL-
queryable database for studying the evolution of galaxies in
the LambdaCDM cosmogony. e-print arXiv:astro-
ph/0608019.

[9] Lemson, G., Budavari, T., and Szalay, A. S. 2011.
Implementing a General Spatial Indexing Library for
Relational Databases of Large Numerical Simulations. Lect.

Notes Comput. Sc. 6809, 509-526.

[10] Moon, B., Jagadish, H. V., Faloutsos, C., and Saltz, J.H.
1996. Analysis of the clustering properties of the Hilbert
space-filling curve. IEEE Transactions on Knowledge and

Data Engineering 13, 2001.

[11] Perlman, E., Burns, R., Li, Y., and Meneveau, C. 2007. Data
Exploration of Turbulence Simulations using a Database
Cluster. Supercomp. Proc., ACM, IEEE, 23.

[12] Riebe, K., Partl, A. M., Enke, H., Forero-Romero, J.,
Gottloeber, S., Klypin, A., Lemson, G., Prada, F., Primack, J.
R., Steinmetz, M., and Turchaninov, V. 2011. The
MultiDark Database: Release of the Bolshoi and MultiDark
Cosmological Simulations. e-print arXiv:1109.0003.

[13] Samet, H. 2006. Foundations of Multidimensional and

Metric Data Structures. Morgan-Kauffmann, San Francisco,
CA.

Table 2. Summary of the Indra simulation cardinalities and
data sizes, including the raw and compressed inverted indices.
The number of particles is given in billions.

 Index [TB]

sims snaps part [B] data [TB] raw comp

1 1 1.1 0.04

1 64 68.5 2.24 0.40 0.044

80 64 5478.4 179.20 31.60 3.520

512 64 35061.8 1146.88 202.24 22.528

9

[14] Springel, V. 2005. The cosmological simulation code
GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105-1134.

[15] Wu, K., Ahern, S., Bethel, E. W., Chen, J., Childs, H.,
Cormier-Michel, E., Geddes, C., Gu, J., Hagen, H., Hamann,
B., Koegler, W., Lauret J., Meredith, J., Messmer, P., Otoo,
E., Perevoztchikov, V., Poskanzer, A., Prabhat, Rübel O.,
Shoshani, A., Sim, A., Stockinger, K., Weber, G., Zhang, W-
M. 2009. FastBit: Interactively Searching Massive Data. J

Phys Conf Ser 180, 1 (2009), 012053.
DOI=http://dx.doi.org/10.1088/1742-6596/180/1/012053

[16] Yan, H., Ding, S., and Suel, T. 2009. Inverted Index
Compression and Query Processing with Optimized
Document Ordering. Proceedings of the 18th international

conference on World wide web. ACM, New York, NY, 401-
410. DOI=http://doi.acm.org/10.1145/1526709.1526764

10

