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ABSTRACT 

We describe the challenges arising from tracking dark matter 
particles in state of the art cosmological simulations. We are in the 
process of running the Indra suite of simulations, with an 
aggregate count of more than 35 trillion particles and 1.1PB of 
total raw data volume. However, it is not enough just to store the 
particle positions and velocities in an efficient manner – analyses 
also need to be able to track individual particles efficiently 
through the temporal history of the simulation. The required 
inverted indices can easily have raw sizes comparable to the 
original simulation. 

We explore various strategies on how to create an efficient index 
for such data, using additional insight from the physical properties 
of the particle motions for a greatly compressed data 
representation. The basic particle data are stored in a relational 
database in course-grained containers corresponding to leaves of a 
fixed depth oct-tree labeled by their Peano-Hilbert index.  Within 
each container the individual objects are sorted by their 
Lagrangian identifier. Thus each particle has a multi-level 
address: the PH key of the container and the index of the particle 
within the sorted array (the slot). 

Given the nature of the cosmological simulations and choice of 
the PH-box sizes, in consecutive snapshots particles can only 
cross into spatially adjacent boxes. Also, the slot number of a 
particle in adjacent snapshots is adjusted up or down by typically 
a small number. As a result, a special version of delta encoding 
over the multi-tier address already results in a dramatic reduction 
of data that needs to be stored. We follow next with an efficient 
bit-compression, adapting to the statistical properties of the two-

part addresses, achieving a final compression ratio better than a 
factor of 9. The final size of the full inverted index is projected to 
be 22.5 TB for a petabyte ensemble of simulations. 

Categories and Subject Descriptors 

H.2.8 [Database Applications]: Scientific Databases, Indexing 
methods, Spatial Indexing 

General Terms 

Algorithms, Design. 

Keywords 

Cosmological N-body simulations, Inverted Index 

1. INTRODUCTION 
The next generation of astronomical surveys will measure millions 
of galaxy positions and probe an ever-increasing volume of the 
sky. We now know the value of cosmological parameters within 
an accuracy of a few percent, at which level subtle effects become 
dominant and parameter estimation becomes increasingly 
sophisticated. In order to understand structure formation at the 
largest scales, data-intensive simulations are needed to keep up 
with data-intensive observations.  

Indra is a suite of large-volume cosmological N-body simulations 
that will provide excellent statistics of the large scale features in 
the distribution of dark matter while at the same time resolving 
the nonlinear evolution of structure. In total, the Indra simulations 
will save over a Petabyte of data, which will be primarily in the 
form of the positions and velocities of dark matter particles at 
many time steps as the simulation evolves. To connect these dark 
matter particles to observations of galaxies, we will identify and 
store the dark matter halos – the nonlinear collapsed structures in 
which galaxies reside – and the lists of particles that define each 
halo. The challenge is that access patterns require more than one 
type of indexing: one is based upon the spatial location of the 
particles, and the other aggregates the whole time history for each 
particle, indexed by their unique ID number, an inverted index for 
35 Trillion particles! This paper presents an efficient solution to 
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storing and indexing these particles and their time histories for 
cosmological simulations.  

1.1 Simulations and Cosmic Variance 
Large cosmological simulations provide the bridge between linear 
theory for the evolution of small fluctuations in the Universe and 
today‟s complex structure as seen in large-scale surveys. In order 
to determine what the Universe was like at early times, 
astrophysicists have been using large numerical simulations based 
on first principles and a set of initial cosmological parameters to 
predict how the Universe would look today.  By computing 
similar statistics on the observations and on the simulations, we 
can “invert” today‟s observable Universe and get a better 
understanding of the precise initial conditions. But observations 
of the Universe have a major problem: there is only one Universe, 
and we cannot change our point of reference and sample it from 
different locations. This effect, “cosmic variance,” poses an 
ultimate limit on the uncertainties we can derive purely from 
observations. On the other hand, we can use an ensemble of 
cosmological simulations to predict the uncertainties in the 
cosmological parameters and their covariances. 

The spatial power spectrum of cosmological fluctuations contains 
a feature, an acoustic resonance frequency, corresponding to the 
size of the Universe when it was 300,000 years old. This feature is 
quite large, at a spatial scale of 128 Mpc/h [5]. Here, h is a 
standard notation for the uncertainty in Hubble‟s constant, at the 
core of all distances in cosmology. h is the precise value, 
measured in units of 100 km/s/Mpc. 1 Megaparsec is a convenient 
unit of distance for cosmology; it is 3.08x1024 cm. One of the 
most important cosmological questions today is the determination 
of the precise details of the resonant peak in the spectrum, and 
how this is correlated with different cosmological properties. As 
the spatial scale of this feature is quite close to the box sizes in 
many of the current simulations (see Figure 1), in any single 
simulation there are very few independent modes on this scale and 
the effective degrees of freedom is very small. As a result, any 
measurements on these scales are quite uncertain by necessity of 
design.  

Today‟s simulations are pushing toward one of two competing 

drivers: bigger box sizes or higher resolution (Figure 1). Both 
require excessive supercomputer resources (hundreds of 
thousands of cores and Terabytes of memory) and present 
significant data challenges – so they are saving only a few 
snapshots and running a single realization. While this is certainly 
useful for certain numerical experiments, it does not solve the 
cosmic variance problem. Even chopping the largest simulations 
into smaller sub-volumes and using these to approximate an 
ensemble average on smaller scales does not quite do the job.  

Due to the non-linear nature of the simulations and the resulting 
mode-mode coupling, the different subvolumes of a single large 
simulation are still correlated. Any ensemble averaging over these 
correlated subvolumes is a difficult task, and the estimation of 
covariances is impacted by the unknown higher order correlations. 
These averages will converge very weakly to the true ensemble 
average, in the limit of infinitely large box size. 

The most efficient way to lower the statistical uncertainties in the 
covariances is to run many independent simulations on the scale 
of the sub-volumes, each with different initial random numbers. 
With this approach, we will get a much faster convergence and 
true independence. There is a clear niche for an ensemble of 
simulations which individually do not strive to be the largest, but 
in their aggregate scale they will be superior to any other 
simulation available today. This is the main motivation for our 
project, the Indra suite of simulations. 

1.2 The Indra Suite of Simulations 
Indra consists of a suite of 512 N-body simulations, each with a 
little over 1 billion (10243) dark matter particles in a 1 Gpc/h 
periodic box. Initially, we have one particle in every 1 Mpc/h 
subvolume. The initial conditions (the random amplitudes and 
phases for each Fourier mode) in each simulation are based upon 
the same cosmological parameters, but with different random 
seeds, providing an excellent statistical characterization of the 
very large scale modes of the matter density field and with a mass 
resolution of about 1011 solar masses per particle.  

The simulations are using the Gadget [14] code, running 
efficiently over multiple parallel nodes using MPI. The 
simulations start at very early times and finish at an epoch 
corresponding to the current age of the Universe. During each run 
64 snapshots are generated, containing particle IDs, positions and 
velocities. Besides the snapshots we also output the complex 
Fourier amplitudes for the innermost core of the Fourier transform 
of the density, representing all spatial scales larger than 10 Mpc/h. 
Furthermore, in each snapshot we run a halo-finder, using a 
friends-of-friends algorithm [2] to identify groups of dark matter 
particles (“halos”) which will be the sites of galaxy formation. 

A single Indra simulation snapshot contains 1.07B particles. With 
64 snapshots, in a single simulation we need to store the 
positions, velocities and IDs of 68.5B particles. By the time we 
reach the whole ensemble of 512 independent realizations, we 
will have 35 trillion separate particle instances to deal with in the 
data set. 

Positions and velocities are output as single precision floating 
point numbers, and the particle ID is a 4 byte integer. The raw 
data volume is 2.24TB per simulation, 1.15PB for the whole 
ensemble. To date, we have completed 80 runs, resulting in 5.5 
trillion particles and 180TB of raw data. 

 

Figure 1. A summary of the current state of the art in large-
scale cosmological simulations. The symbols in red denote 
Indra: the triangle is one simulation, the yellow circle is the 
current state of 80 runs completed, and the diamond is the 
whole 512 run suite. The horizontal axis is the linear size of 
the total box, and the vertical scale shows the mass resolution. 

2



The volume and resolution of the Indra simulations will allow 
studies of structure formation from the largest scales all the way 
into the nonlinear (small scale) regime. We will additionally be 
able to run a few high-resolution re-simulations [7] to capture 
more precisely the galaxy-scale formation of structure. For the 
purposes of this paper we will use a down-sampled version of a 
single realization of Indra, where the number of particles is only 
5123. 

1.3 From Simulations to Cosmological 

Laboratories 
Traditionally, numerical simulations were distributed by enabling 
people to download the binary snapshot files, which worked fine 
as long as the files were a few GB per snapshot and there were not 
too many of them. However, the full suite of Indra simulations 
will produce a bit over a Petabyte of data. Few universities and 
national laboratories have the resources and expertise to manage 
and analyze such a large dataset, and moving hundreds of 
Terabytes over the network is not currently feasible. With that in 
mind, we are setting up Indra as a public numerical laboratory, 
where the data is optimally organized for the necessary analysis 
patterns and the computations performed where the data is 
located. This will be part of the Data-Scope instrument at the 
Johns Hopkins University, which has been designed specifically 
for data-intensive analyses. 

The analysis of cosmological simulations often involves accessing 
relatively small regions of space out of a very large box or 
filtering the data according to certain properties. Databases, with 
their excellent indexing properties, turned out to be surprisingly 
well-suited to this purpose. The database built on top of the 
Millennium simulation [8] quickly became the world‟s most 
popular reference simulation resource for cosmology; more than a 
thousand people are running database queries over the search 
engine regularly. A clever data structure inside the database 
enables extremely fast searches and aggregations over the merger 
trees of galaxies, and a user-defined function builds dynamic light 
cones out of the simulation on-the-fly.  

However, the Millennium simulation database does not store the 
full snapshots of particle positions and velocities but instead 
contains primarily halos, which are collapsed regions identified in 
the simulation using the dark matter particle positions. Another 
simulation database, MultiDark [12], was able to store only a few 
snapshots of particle data because of the huge storage volume 
required; additionally, queries on its particle table are admittedly 
time-consuming, limiting its usefulness.  

With Indra, we will be storing all the particle positions and 
velocities, for all 64 snapshots and all 512 simulation runs, 
totaling 35 trillion particles. There will also be halo catalogs, 
linked to the particle data, and the complex Fourier modes of the 
density field, which are most naturally stored as a cubic grid. The 
database for the Indra suite of simulations will require efficient 
storage of the particle positions and velocities, and cosmological 
analyses will require the ability to track individual particles 
through the temporal history of the simulation as they collapse 
into halos. New data structures and indexing schemes are needed 
for a Petabyte of cosmological simulation data. 

This paper proceeds as follows. In Section 2, we describe in some 
detail the storage scheme designed for the Indra simulations and 
the requirements for the efficient analysis of the data, motivating 
the use of inverted indices as well as a compact storage model for 

the base date itself. We describe the indexing scheme in Section 3, 
showing how it greatly speeds up some typical queries and can be 
built on-the-fly. In Section 4 we explain how we exploit the 
dynamics of the simulation to compress the indices, which could 
easily have raw sizes comparable to the original simulation. 
Finally in Section 5 we conclude with discussion of ways to 
improve the compression and compute indices as we dynamically 
load the simulation one snapshot at a time. 

2. THE INDRA STORAGE MODEL  
The data for each individual Indra simulation will be stored in a 
relational database. At JHU we have been using a cluster of very 
high performance database servers, all running Microsoft SQL 
Server 2008. SQL Server offers an extremely flexible mechanism 
to augment its properties with user defined functions and data 
types, capable of implementing very complex objects with their 
properties and methods, all accessible through SQL. The database 
engine provides automatic parallelism (as long as the data is laid 
out well), and efficient query plans. Over the years we have 
developed an elaborate spatial indexing library [9] that enables 
the use of space filling curves to organize and search data, and 
maps onto range queries over the high performance B-trees inside 
the database engine. 

The data is organized into three main tables: the Particle table 
contains the particle ID, position, and velocity of every particle 
for all 64 snapshots, labeled by snapnum, in the range of [0,63]; 
the Halo table contains the halo ID, the list of particle IDs that 
comprise each halo, and various derived halo properties, for all 
halos at all snapnums; and the Fourier table contains the Fourier 
modes of the large-scale density field saved at a high temporal 
resolution. The full suite of Indra simulations will thus consist of 
512 separate databases, each with its own Particle, Halo, and 
Fourier tables, plus some small tables of metadata containing the 
physical units of the simulation, the correspondence between 
snapshot number and cosmological epoch, etc. These databases 
can (and will) be stored on separate database servers, distributed 
over a large cluster with a fast interconnect. 

Each of the main data tables will make use of a user-defined data 
type called SqlArray [4], which allows blobs of binary data 
ordered in multi-dimensional arrays to be stored as one item in a 
row. For the particle data, this greatly reduces the number of 
required rows, considering that a schema with one row per 
particle results in over 68 billion rows for just one of the 512 
Indra simulation runs. For the halo data, we will store the IDs of 
the particles making up the halo also as a SqlArray, in the same 
row as the rest of the halo properties. This halo membership array 
can then be used to link to the particle data as well as calculate 
halo properties on the fly. The array-based storage is also an 
optimal way to store the Fourier modes of the density field and 
integrates well with common math libraries for the calculation of 
Fast Fourier Transforms directly in the database. The SqlArray 
data-type is also used by several other projects, namely the 
turbulence databases at JHU, currently containing more than 
100TB of data [11]. 

In analyzing cosmological simulations, one is often interested in a 
particular region of the simulation cube – i.e., halos or collapsed 
structures, voids or low-density regions, particles near halos, light 
cones, etc. Many common analyses require identifying particles or 
halos within localized regions of the simulation volume. Thus 
instead of randomly assigning particles to different arrays, we 
group the particles into “buckets” organized according to a space-
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filling Peano-Hilbert curve. The PH curve is known to have the 
best clustering properties among all space filling curves [10], 
enabling maximally sequential access on the hard drives 
containing the data for particles close to each other in the 
simulation volume. Thus indexing along a PH curve makes spatial 
queries much more efficient.  

The Spatial3D library [9] has been developed to use various 
space-filling curve plugins and define geometric searches. It 
enables the composition of 3-dimensional shapes from basic 
geometric primitives; these shapes are accessed via User-Defined 
types. Searches for points within these shapes are expedited by the 
space filling curve index, and the shapes exploit the periodic 
boundary conditions of cosmological simulations. The Spatial3D 
library is currently being used in the Millennium, MultiDark, and 
turbulence simulation databases. 

For Indra, we use a coarse-grained PH curve and group all 
particles with the same PH key into the same array. The buckets 
are leaves of a 6-deep, level oct-tree, with 64 buckets per linear 
dimension. The total number of the buckets is 643=262,144. So 
for our test simulation, with 5123 particles and a 6-bit PH curve, 
we can reduce the number of required rows in the Particle table by 
a factor of 512. This is significant, as there is a 6 byte overhead in 
SQL Server for each row. This decreases the size of the B-tree 
indices as well. Additionally, indexing the particles according to a 
PH curve can greatly speed up spatial queries.  

Within an individual PH bucket, we order the particles by their ID 
(partID). This ensures that the particle at index i in the ID blob 
will have its position and velocity information at index i in the 
corresponding position and velocity blobs. While there are other 
options, like extending the Peano-Hilbert keys down to the level 
of individual particles, we will see later that this ordering offers 
certain advantages. 

The simulations start from small perturbations on top of a uniform 
background density, sampled by a discrete array of particles. As a 
result, the buckets will have an almost uniform initial density, 
with approximately Gaussian distribution of the bucket counts, 
with a mean of 512 particles per bucket. However, due to 
gravitational clustering, the count distribution will soon become 
very skewed as particles attract one another, and there will be a 
long tail, corresponding to a hierarchy of gravitationally bound 
groups and clusters of particles (see Figure 2). 

Currently we store both the positions and the velocities as single 
precision floating point numbers (4 bytes), but it is clear that the 
data can be represented in a more compact fashion. For each 
bucket one can store (or calculate from the PH key) the lower left 
hand corner of the cube describing the bucket. Then each 
particle‟s relative position within the bucket can be turned into a 
16-bit unsigned integer. As the bucket size is (1024/64) = 16 
Mpc, the smallest distance we can represent is 16/216=2-12 Mpc. In 
order to estimate the largest relative distance error, we need to 
compare this to the size of the box, 1024 Mpc. This dimensionless 

ratio is 2-22. The accuracy of this is just 2 times worse than , the 
accuracy of the IEEE floating point representation (2-23). As the 
simulation is using a much larger “softening length” for the 
calculations of the gravitational force, this truncation error is 
irrelevant. One can perform a similar compression of the 
velocities, by scaling them and truncating as 2-byte signed 
integers. So these simple transformations enable us to save a 
factor of 2 in the basic storage of the raw data. 

3. INVERTED INDEX  

3.1 Backtracking Particles 
Another type of query pattern requires the back-tracking of certain 
particles along their trajectory.  Though grouping and indexing 
the particles according to their Peano-Hilbert index has several 
advantages, especially when we need to evaluate localized 
statistics, particle tracking is quite difficult. The brute force option 
would be to re-organize the data and build a secondary index table 
sorted by partID and snapnum, also containing the position and 
velocity. This would effectively double the storage required, 
adding another PB to the storage requirements. Alternatively, we 
can search the ID blob in each PH bucket for the relevant IDs, but 
such queries will be prohibitively time-consuming. 

However, these back-tracking queries are typically highly 
selective, needing position or velocity data on only hundreds or a 
few thousand of the 1.07 billion particles in the simulations. This 
problem requires a faster way to search for particles by their ID, 
without sacrificing our previously described data storage 
strategies of grouping the particle information within a time step 
by PH index and storing that grouping as a set of blobs in a single 
row.  

3.2 Previous Approaches 
In our initial approach to solving the indexing problem, we 
associated a Bloom filter [1] with each blob of particle IDs at each 
time step. One of the biggest bottlenecks in finding individual 
particles based on their IDs is the overhead in unpacking 
hundreds of thousands of blobs and searching through them, most 
of which do not contain any data needed to satisfy these highly 
selective queries. A Bloom filter would allow us to quickly probe 
each blob without unpacking it to determine whether it contains 
any relevant data. We would then need to unpack only those blobs 
that result in a positive match.  

However, there were several issues with this strategy. In these 
particle tracking queries, we are often querying for hundreds or 
thousands of particles. With a 6 bit PH index, there are 262,144 
indices, and thus Bloom filters, for each time step. Probing that 
many Bloom filters hundreds of times is still prohibitively slow. 
We then experimented with using Bloom filters to perform set 
intersection queries. When using Bloom filters with k hash 
functions, we have a potential common member of two Bloom 
filters if they have at least k common bits set to 1. We can 

 

Figure 2. The distribution of the number of particles per 
bucket as a function of time (labeled with snapnum). The 
average number of particles is 512 per bucket. Gravity creates 
increasingly tighter clusters in some of the cells, resulting in a 
very skewed distribution, approximating a lognormal at late 
times. The distribution is most skewed at the last snapshot. 
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determine the number of 1 bits the two filters have in common by 
taking the bitwise AND of the two Bloom Filters. We could 
therefore take the bitwise AND of the Bloom filter associated with 
the blob currently being searched and a Bloom filter associated 
with the list of particles being searched for to determine whether 
they had a common member. However, while this approach was 
faster, we lost the nice properties of the low false positive rates of 
Bloom filters when probed for one value at a time. With this 
method, the false positive rate was close to 100%, resulting in 
nearly every intersection query having a potential match. We were 
getting so many false positives that we were back at the original 
bottleneck of needing to unpack prohibitively many blobs. 

3.3 Basic Inverted Index 
Rather than rebuilding a transposed index and effectively doub-
ling our storage, we will show how to build an efficient pointer 
into the existing index. In order to do this, we build first a simple 
inverted index on the particle data so that we can use the primary 
keys of our Particle table, then we consider various compression 
schemes to minimize its size.  

Every particle‟s data (position, velocity) are stored in SqlArray 
blobs in the Particle table, ordered and indexed by (snapnum, 
PHkey). The particle‟s position within this array is given by its 
“slot,” which is a 2 byte unsigned integer. Therefore, each 
particle‟s data can be fully identified by a three part address: 
(snapnum, PHkey, slot).  

The index itself is simple in principle. Imagine that we create an 
additional table in our database for each simulation. This table has 
four columns: partID, snapnum, PHkey, and slot. The primary key 
of the table is on the partID and snapnum. The PHkey column 
contains the PHkey of the particle at the particular snapshot. The 
slot refers to the offset of that particle‟s information within the 
blobs at that PHkey. Because the data are sorted by particle ID 
within a blob, this slot is consistent for the three blobs in the 
Particle table, containing partIDs, positions, and velocities.   

Storing the slot information alleviates the need to unpack each of 
the blobs containing relevant particle data and search through 
them. Using one of the methods of the SqlArray class, we can 
directly seek to and extract the relevant data within each blob, 
further speeding up the query.  

In the following sections, we show how we built the index, how 
this information is enough to complete particle tracking queries in 
seconds, and that we can create the inverted index quickly and 
with minimal overhead to the simulation data post-processing we 
already must perform. We also show that we can compress the 
index to the point where the extra space required for it is 
acceptable compared to the size of the simulation. 

3.4 Construction of the Index 
Creation of the index takes several steps. The Gadget-2 simulation 
code outputs flat files at every time step containing the position 
and velocity of each particle in a special format [14]. When we 
load the simulation data into the database, these flat files are 
parsed and transformed into files matching our table schema in the 
native SqlServer binary format for fast bulk ingest.  

The output from the simulation in each snapshot is divided into 
several files using a high level PH curve, i.e. all particles in a 
given oct-tree cell are stored in the same file. We transform one 
file at a time by reading its contents into memory, computing the 

6-deep PHkey value from the positions, sorting it by PHkey and 
then partID, then writing the data back out in the SqlServer native 
binary format.  

These files contain the snapnum, partID, PHkey, as well as the 
offsets within each PH bucket for each particle, as we write the 
data to disk. This additional step (on top of the loading the proper 
base data) adds an approximately 18% overhead to the processing 
time. We can then use the BCP command line utility to quickly 
load the files into our database. This is the same technique used to 
load the transformed particle files. The loading is performed into 
separate temporary tables for each of the files, using as much 
parallelism as possible. 

However, for our inverted index, we need to transpose these files, 
where we can place the location data for the same particle 
collected into a single block, ordered by snapnum. We need the 
sort order to be partID and then snapnum. This requires an 
additional sort on the index.  

This sorting of the index is done in the database using a custom 
merge sort workflow employing multiple steps, coded as stored 
procedures. We first sort all records within a snapshot by partID. 
The index for a single snapshot is about 1.5 GB, so this sorting 
can be done very efficiently in memory. We then split the 
snapshot into 128 blocks, such that the records from all time steps 
for the first 1/128th particle IDs are in the first block, the second 
1/128th records are in the second block, etc. However, each of 
these blocks are still sorted by (snapnum,partID). We then re-sort 
each block in memory (each block is just under 800 MB) by the 
transposed order of our keys (partID, snapnum) resulting in the 
final ordering required by our index. 

Each of these steps – processing the simulation output, loading 
into the database, and sorting the index – can be done in parallel. 
Figure 3 illustrates the index creation process from start to finish. 
Starting from the flat files that are portioned by PHkey, we can 
create a partial index for every snapshot independently and thus in 
parallel. We can then load each of these partial indices into the 
database in parallel, especially if they are partitioned across 

 

Figure 3. Flowchart of the index creation process. The 
blocking of the data enables efficient memory usage and 
parallelism. 
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multiple disks. Once the data is in the database, we partition it 
into small blocks that can be sorted in parallel.  SQLServer uses 
the available multiple cores very efficiently. Figure 4 shows the 
scale-up of the last two portions of this workflow as function of 
the number of processes employed on an 8-core machine. Each 
process performed the extraction from the snapshot partial indices 
to an index block and then sorted the index block by (partID, 
snapnum) for 8 blocks sequentially. This process did not quite 
achieve linear scaleup but still performed very well with 8 
concurrent processes. One of the next steps in dealing with the 
Indra data is to build a highly efficient parallel loader for the 
particle data, fast enough to dynamically load simulation time 
steps on-demand. Our expectation is to load a single snapshot on 
the order of one minute. One of the components of this loader will 
be to efficiently merge partial indices with the index from a newly 
loaded snapshot to allow for incremental updates to a functioning 
index (see Section 5). 

3.5 Particle Tracking Queries Using the 

Inverted Index 
Once the index has been built, it can be used to efficiently 
perform particle tracking queries. These queries take the following 
general form1: 

o Identify the particle IDs of the particles being queried – 
these are often the member particles of a halo – and 
place them into a temporary table. 

o Join this ID table with the inverted index where the time 
step of the index matches the desired time step. If 
querying for the positions at all time steps, no predicate 
on the time step number is provided. This provides a list 
of PHkeys and slots needed. 

                                                                 
1 The actual implementations of these queries are as User-Defined 

Functions in SQL CLR using C#. Using C# makes it easier to 
interact with the SqlArray library functions. 

o Consolidate all of the slots for a given PHkey in a given 
time step into a single array using the SqlArray library, 
and store this consolidated index data in another 
temporary table. 

o Join the (snapnum, PHkey, slot) table with the Particle 
table. 

o Select the data at the needed slots from each of the 
blobs. 

Figure 5 shows the halo tracking query execution time as a 
function of the number of particles in the halo. Even the largest 
halos at over 9000 particles can be tracked in just a few seconds, 
compared to the several minutes required when not using the 
index. 

One example of a query that requires particle tracking is building 
a merger tree, which links a given halo to the halos in previous 
(and subsequent) snapshots by tracing the dynamical evolution as 
smaller halos combine to form larger halos at later times. Since 
the halos are identified separately at each snapshot of the 
simulation, the halo IDs in different snapshots have no relation to 
each other. Building the merger history of a halo requires 
comparing the particle lists for halos that have similar locations 
across consecutive snapshots, and then assigning parent halos to a 
given halo according to some physical criteria. The speed-up 
provided by the inverted index will make it feasible to calculate 
halo merger trees directly in the database.  

A simplified version of a merger tree is shown in Figure 6, where 
just the x positions of a late-time halo are shown for all previous 
time-steps. In particular you can see a large branch to the right 
and smaller branch to the left, which would have been a sub-halo 
that only merged with the larger halo at a time step of around 60. 
This is an example of the type of data that we can efficiently 
gather using the inverted index. 

Some queries that rely on particle tracking do not depend on the 
halos. The particle IDs themselves encode information about the 
Lagrangian positions of the particles, i.e. their initial locations on 
the 3-dimensional cubic lattice. This information is used, for 
example, by the ORIGAMI algorithm [6] which measures the 
morphology of the „cosmic web‟ of structures in a simulation by 
keeping track of whether particles have switched places with 
respect to their initial configuration. This will require particle 
tracking for every single particle in the simulation, which will be 
possible only with the efficiencies that the inverted index 
provides. 

4. INDEX COMPRESSION 
Here we show how we exploit properties of the underlying 
physical system being modeled, as well as efficient integer bitwise 
compression schemes, to significantly reduce the footprint of the 
index on disk. 

The index as described so far is unfeasible for use in petascale 
simulations such as Indra. A single run of the Indra simulation is 
just over 2 TB, while the index for a single run of the simulation 
is about 0.4 TB, or 1/5 the size of a simulation. This means that 
for a 1 PB suite of simulations, we are also incurring an additional 
200 TB needed to store the inverted indices for these simulations. 
Thus, we turn to a variety of compression techniques to minimize 
this footprint. 

 

Figure 4. Scaleup for splitting the index into blocks by partID 
and then sorting these blocks. These are the last two steps of 
the index creation. Each process performed these two 
operations for 8 blocks sequentially. The base time for one 
process was 15 seconds. 
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4.1 Compressing the PHkey Column 
Let us consider first accessing the history related to a single 
particle. To store the relevant 3-part address, we need to create an 
array for each particle that contains three columns: the snapnum 
(0.63), the PHkey in each snapshot (18 bits), and the slot (16 
bits). As for each particle this table will be exactly 64 rows deep, 
we can omit storing the snapnum; it will simply map onto the row 
number of the table. This saves us 64 bytes per particle. 

Next, we should look at the statistics over the histories of the 
particles. Figure 7 displays the probabilities that a particle will 
cross over to another bucket during the simulation. It turns out 
that for the bucket size we have chosen, the average number of 
cross-overs is 1±0.84. This means, that the column containing the 

PHkeys is incredibly redundant, typically 63 out of the 64 values 
are identical. 

Furthermore, it is important to note that the particles move 
continuously and their velocities are small enough that between 
consecutive snapshots they can only cross into their nearest 
neighbors. As each bucket has only 26 directly connected 
neighbors (we have periodic boundary conditions), we can encode 
the relative displacements as one of 27 distinct values, with 0 
designating no crossovers. As a result, we can assume that each 
column containing the PHkeys can be represented as the initial 
PHkey, and an array of 5-bit numbers, mostly consisting of zeros. 
This is effectively a physics-based delta encoding of the PHkeys. 

We can compress the data further by noting that every crossover 
can then be represented in 11 bits, a 6-bit address for the 
snapnum, and a 5-bit transition code. We also need 6 more bits to 
store the count of the crossovers, as there are 64 snapshots. 

In summary, each PHkey column can be stored in 18+6+11N bits 
where N is the number of transitions. As the expectation value of 
N is 1, the typical storage requirement for the PHkey column is 35 
bits, compared to 64*32 = 2048 for the raw database column, for 
an effective compression ratio of 2048/35 = 58.5. 

To decode this scheme, we also create a secondary lookup table 
which stores the correspondence between PHkey neighbor code 
and actual value for each key. This table is 123.2 MB on disk (for 
our test simulation), negligible compared to the terabytes needed 
to store the index for the entire simulation suite, even after being 
compressed. We can then trace the path of the particle through its 
adjacent neighbors using this lookup table until we reach the 
decoded PHkey for the time step being queried. As this table is 
small, and will be frequently used, it will always remain in hot 
cache. 

4.2 Compressing the Slots 
The same observations about the physical dynamics of the 
simulation lead to a compression scheme for the slot portion of 
the index. PH cells can have thousands of particles in them, and 
so without any compression we need 2 bytes to store the slot 
number. But we have already noted that because the particles are 
relatively slow moving, they don‟t change PH cells very often. 
Figure 8 shows the probability distribution of distinct slot 
numbers for an individual particle. The result is quite depressing 
at first, as the expectation value is 57, out of the maximum 64. 

 

Figure 7. Probability of the number of times a particle will 
cross over to another bucket during the simulation. The x-axis 
is the number of crossovers. 

 

Figure 5. Query execution times to find the positions of all 
particles in a halo at all time steps using the uncompressed 
inverted index. The times are the average of computing the 
query for 10 equal-sized halos in the final snapshot. Even the 
largest halos can be fully tracked in under 30 seconds. 

 

 

Figure 6. The x position of all particles in a 200-particle halo 
at every timestep. The halo was identified in the final timestep 
(64). This figure shows the clustering of the particles through 
time as they are drawn together by gravitational forces. The 
query to find all of this data took 4 seconds to perform using 
the inverted index. 
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However, we should realize that in order for the slot number for a 
particle to change between consecutive snapshots, other particles 
with a lower ID must either enter or leave the particle‟s PH cell or 
the particle must change PH cells. Thus, the change in slot 
number between adjacent snapshots will tend to be small, as in a 
given snapshot only 1/64th of the particles are changing buckets. 
We therefore propose to use first a delta encoding [3] on the slot 
number, resulting in much smaller numbers to be stored, on the 
order of 10‟s rather than 1000‟s. 
Figure 9 displays the probability distribution of the differential 
slot values (dslot). As the figure shows, the slot deltas are heavily 
weighted towards small numbers. Furthermore, the distribution is 
quite skewed towards positive dslot values. First this may seem 
strange, but this is just a reflection of the skewness present in 
gravitational clustering. As the distribution of cell counts has a 
long tail with cells of very high cardinality, these arise as particles 

from low density adjacent cells are all moving into a high density 
cell. As a result, there will be only small decreases on the slot 
values on all the low density cells, while in the small number of 
high density cells we will generate large dslot values as many new 
particles are inserted into the ordered lists at every snapshot. 

In order to assess the details of the distribution it is better to plot 
both the positive and negative tails of the distribution, on a 
logarithmic scale (see Figure 10). 

Using this plot, we can estimate how compressible the dslot 
values are. We can define a window with a [dmin,dmax] value within 
which a small number of bits encode the value. The remaining 
small number of occurrences can be encoded as exceptions taking 
up a full 16 bits. This is essentially a variant of the Frame-of-
Reference (FOR) encoding [3]. We can use N bits to represent the 
small values, with 0 corresponding to the lower bound,  

dmax =  dmin+2N-1,    (1) 

and we can use the value dmin+2N as marking an exception.   

We will use the two-tailed distribution to define a symmetric 
threshold applied to both the positive and negative tails alike. For 
the different values of this tail probability we will get both a 
positive and negative limit for the exceptions. For N bits, these 
values should be 2N-1 apart.  

For example, for N = 4, we should select a threshold for the tail 
probability to be 0.100, i.e. 20% of the slots will be exceptions. 
However, the remaining 80% can be then coded in 4 bits. The 
table below shows the respective thresholds for N = 4, 5 and 6. If 
the tail probability is p, for a given N, then the effective number of 
bits is given by 

B = N + 2p·16.   (2) 

The summary of these different N values is shown in Table 1. It is 
clear that there is an optimum: N = 5 gives the best compression 
for the dslot column at 6.28 bits per slot. 

5. CONCLUSION 
The Indra suite of cosmological N-body simulations will provide 
excellent statistics of the large scale features in the distribution of 
dark matter while at the same time resolving the nonlinear 

  

Figure 10. The positive and negative cumulative tail 
distributions of the delta-encoded slot values (dslot). 

  

Figure 8. The figure shows the probability distribution of the 
number of distinct slot values for the individual particles. The 
average is 57 out of the maximum 64. 

 

 

Figure 9. The probability distribution of the delta-encoded 
slot values. Note the skewness of the distribution, and also the 
sharp peak at zero lag. 

Table 1. Summary of different thresholds for our  
FORDelta compression scheme 

bits range tail 

probability 

effective 

bits 

compression 

ratio 

4 15 0.100 7.20 2.50 

5 31 0.040 6.28 2.72 

6 63 0.015 6.48 2.54 
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evolution of structure. It will present the best effort to-date toward 
overcoming the cosmic variance limit on the uncertainties we can 
derive for large-scale structure measurements of cosmological 
parameters. When complete, Indra will be made available to the 
community through a state of the art database infrastructure. 

The Indra simulation data will consist of 10243 particles per 
snapshot, plus halo catalogs and the complex Fourier modes of 
the density field, for 64 snapshots and 512 individual simulations, 
resulting in 35 trillion particles and 1.15 petabytes in total.  

The database will make use of the SqlArray library by grouping 
the particles into chunks according to the space-filling Peano-
Hilbert curve, greatly reducing the number of required rows and 
thus the SQL Server overhead. Though grouping and indexing the 
particles according to their PH index has several advantages, 
especially when we need to evaluate localized statistics, particle 
tracking is quite difficult. 

In this paper we have presented a strategy for creating an efficient 
inverted index for these data that speeds up particle tracking 
queries so that they complete in seconds. The index can exploit 
the physical characteristics of the particle motion in cosmological 
simulations to implement a compression scheme on this index. 

The two part address of our inverted index can be heavily 
compressed. The first part, describing the PHkey is reduced by a 
factor of 58.5. The second part, describing the slots, can be also 
compressed, using a combination of Delta and Frame-of-
Reference encoding. The compression ratio for the second part of 
the address is 2.72. The resulting mean compression ratio for the 
whole index is 202/22.5 = 8.97, reducing its footprint to 22.5TB 
(see Table 2). 

One of the challenges with the inverted index as presented here is 
that we must create the index for an entire simulation at once in 
order to get good compression performance. Our merge-sort 
workflow to sort the index also relies on creating the complete 
index at once. We plan on exploring ways to efficiently generate 
and compress a partial index on only some of the snapshots, as 
well as ways to efficiently merge these partial indexes together. 
For example, faster compression and decompression schemes 
could make the process of updating the index faster. 

We are also in the process of building a fast parallel loader to load 
simulation data into the database quickly. We believe we will be 
able to load a single snapshot into the database on the order of a 
minute by using a server with a large number of cores and storing 
the raw data on SSDs for faster I/O throughput. If we reach these 
speeds we can dynamically load in snapshots on demand, rather 
than needing to load an entire simulation into the database at 
once. Being able to incrementally update the inverted index one 

snapshot at time would make this dynamic loader even more 
effective. 
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